This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

The Infrared Spectra (4000-50 cm⁻¹) of Complexes of 2,2'-Bipyridine, 1,10-Phenanthroline and their Perdeuterated Analogues with Metal(II) Perchlorates of the First Transition Series

David A. Thornton^a; Gareth M. Watkins^a ^a Department of Chemistry, University of Cape Town, Rondebosch, South Africa

To cite this Article Thornton, David A. and Watkins, Gareth M.(1992) 'The Infrared Spectra (4000-50 cm⁻¹) of Complexes of 2,2'-Bipyridine, 1,10-Phenanthroline and their Perdeuterated Analogues with Metal(II) Perchlorates of the First Transition Series', Journal of Coordination Chemistry, 25: 4, 299 – 315

To link to this Article: DOI: 10.1080/00958979209409204

URL: http://dx.doi.org/10.1080/00958979209409204

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE INFRARED SPECTRA (4000-50 cm⁻¹) OF COMPLEXES OF 2,2'-BIPYRIDINE, 1,10-PHENANTHROLINE AND THEIR PERDEUTERATED ANALOGUES WITH METAL(II) PERCHLORATES OF THE FIRST TRANSITION SERIES

DAVID A. THORNTON* and GARETH M. WATKINS*

Department of Chemistry, University of Cape Town, Rondebosch 7700, South Africa

(Received August 14, 1991)

A full infrared assignment (4000 to 50 cm^{-1}) for [M(bipy)₃](ClO₄)₂ and [M(phen)₃](ClO₄)₂ (M = Mn, Fe, Co, Ni, Cu, Zn; bipy = 2.2'-bipyridine, phen = 1,10-phenanthroline) and their fully deuterated analogues is presented. Several ligand bands show metal sensitivity in both series of complexes, but less so with phen. In the Jahn-Teller distorted [Cu(phen)₃](ClO₄)₂ complex only three ligand bands show splitting, accounting for earlier postulations of the absence of J-T distortion based on spectroscopic evidence. Vibrations previously ascribed to activated ligand bands are identified as M-N bends, as combination bands, or are more fully characterized.

Keywords: Infrared, 2,2'-bipyridine, 1,10-phenanthroline, deuteration, metal(II) perchlorates

INTRODUCTION

The deuteration study of the $M(II)(ClO_4)_2$ complexes with *tris*-2,2'-bipyridine (bipy)₃, and *tris*-1,10-phenanthroline (phen)₃, has been undertaken for several reasons.

First, it was initially thought that a comparison between the spectra of the Cu(II) *tris*-complexes with these two ligands clearly demonstrated restriction of the Jahn–Teller induced tetragonal distortion in a Cu(II) complex by the limited capacity of a ligand for expanding its bite (N–N distance). In noting the splitting of the 625, 660 cm^{-1} bipy doublet into a triplet, Inskeep¹ was the first to suggest spectroscopic evidence for tetragonal distortion in the [Cu(bipy)₃]²⁺ cation. He also suggested that the absence of splitting in the infrared spectrum of the [Cu(phen)₃]²⁺ cation indicated the absence of tetragonal distortion as a result of the more rigid ligand. Percy and Thornton²⁻⁴ extended the infrared investigation of these complexes to 200 cm^{-1} , and from the splitting of the M–N stretching frequencies in [Cu(bipy)₃](ClO₄)₂ and its apparent absence in [Cu(phen)₃](ClO₄)₂, concurred with Inskeep. Unfortunately, these studies were at the extreme end of the range for the instrumentation used, and therefore subject to poor resolution. Two far-infrared metal isotope labelling studies (to 150 and 100 cm⁻¹ respectively) of these complexes

^{*} Authors for correspondence.

made by Nakamoto and his co-workers^{5,6} later revealed both more vibrational bands and a greater splitting by the Cu(II) complexes in the metal-nitrogen stretching and bending region than had previously been reported. Finally, publication of the crystal structures of both $[Cu(bipy)_3](ClO_4)_2$ and $[Cu(phen)_3](ClO_4)_2^{7,8}$ conclusively shows that *both* tris-bidentate complexes are tetragonal as a result of a static Jahn-Teller distortion. Therefore a full assignment of the $[M(phen)_3](ClO_4)_2$ complexes is necessary to investigate whether spectroscopic evidence for the tetragonal distortion of the Cu(II) was previously overlooked or, alternatively, to determine why it was considered to be absent.

Secondly, the far-infrared assignments (below 200 cm^{-1}) reported for these complexes did not take into account the metal-ligand bending modes. In the complexes of both ligands, several bands were generally described by Nakamoto and his co-workers as being activated ligand bands.^{5,6,9} A full vibrational assignment should therefore be useful in distinguishing between internal ligand modes and the metal-nitrogen vibrations.

Thirdly, although several deuteration studies of M(II) complexes with bipy have been made,¹⁰⁻¹² no systematic ligand isotope labelling study has been attempted for the metal(II) complexes of the first transition metal series, nor has there been a ligand isotope study reported for any metal complex with phen.

EXPERIMENTAL

The infrared spectra were recorded on a Perkin Elmer 983 spectrophotometer using both Nujol mulls (2000 to 200 cm⁻¹) and hexachlorobutadiene mulls (4000 to 2000 and 1500 to 1200 cm⁻¹) between CsI plates. Far-infrared spectra were recorded in Nujol mulls (500 to 50 cm⁻¹) between polyethylene plates on a Digilab FTS 16 B/D interferometer. 2,2'-Bipyridine- d_8 (98% isotopic purity) and 1,10-phenanthroline- d_8 (98% isotopic purity) were supplied by Merck, Sharp and Dohme (Canada) Ltd. All Fe(II) complexes were prepared under nitrogen, using nitrogen-purged solvents.

$[M(bipy)_3](ClO_4)_2$ (M = Mn, Fe, Co, Ni, Cu, Zn)

A 5 cm³ hot aqueous solution of 0.1 g (0.27 mmol) of metal perchlorate (as the hydrated salt) was added to a hot solution of 0.17 g (1.10 mmol; 4:1 mol ratio) of 2,2'-bipyridine in 10 cm³ of 96% EtOH, with stirring. The solution was allowed to cool and the precipitate filtered and washed with absolute EtOH. The complex was recrystallized from the minimum amount of hot acetone and dried over silica gel, under reduced pressure. Yields of 86 to 98% were obtained. Microanalytical data are given in Table I.

The deuterated complexes were prepared as for their $-d_0$ analogues, at one-half the previous scale. Yields of 80 to 94% were obtained. Microanalytical data are given in Table I.

$[M(phen)_3](ClO_4)_2$ (M = Mn, Fe, Co, Ni, Cu, Zn)

A solution of 0.1 g (0.27 mmol) of metal perchlorate (as the hydrated salt) in 3 cm^3 96% EtOH was added to a solution of 0.16 g (0.82 mmol; 3:1 mol ratio) of 1,10phenanthroline monohydrate in 7 cm^3 of 96% EtOH, with stirring. The resulting precipitate was filtered and washed with small amounts of water and ethanol. The complex was recrystallized from the minimum amount of hot acetone and dried over silica gel under reduced pressure. Yields of 64 to 98% were obtained. Microanalytical data are given in Table I.

The deuterated complexes were prepared as for their $-d_0$ analogues, at one-half the previous scale. Yields of 73 to 98% were obtained. Microanalytical data are given in Table I.

	- Miler outhary ses of		04/2 001	npiexes.			
		E	xperimer	ntal	C	alculated	1
	Colour	%C	%Н	%N	%C	%Н	%N
$[Mn(bipy)_3](ClO_4)_2$	lemon yellow	49.60	3.45	11.70	49.88	3.35	11.63
$[Fe(bipy)_3](ClO_4)_2 \cdot l_2^1 H_2O$	crimson	48.10	3.45	10.95	48.02	3.65	11.20
$[Co(bipy)_3](ClO_4)_2$	sand-yellow	49.65	3.35	11.65	49.60	3.33	11.57
$[Ni(bipy)_3](ClO_4)_2$	pink	49.70	3.40	11.55	49.62	3.33	11.57
$[Cu(bipy)_3](ClO_4)_2$	royal blue	49.10	3.30	11.50	49.29	3.31	11.50
$[Zn(bipy)_3](ClO_4)_2$	white	49.10	3.30	11.45	49.17	3.30	11.47
$[Mn(bipy-d_8)_3](ClO_4)_2$	lemon yellow	48.10	3.30	11.20	48.26	3.24	11.26
$[Fe(bipy-d_8)_3](ClO_4)_2 \cdot {}_2^1H_2O$	crimson	47.65	3.45	11.00	47.63	3.33	11.11
$[Co(bipy-d_8)_3](ClO_4)_2$	sand-yellow	47.90	3.25	11.25	48.01	3.22	11.20
$[Ni(bipy-d_8)_3](ClO_4)_2$	pink	47.55	3.25	11.20	48.02	3.22	11.20
$[Cu(bipy-d_8)_3](ClO_4)_2$	royal blue	47.60	3.25	11.20	47.71	3.20	11.13
$[Zn(bipy-d_8)_3](ClO_4)_2$	white	47.45	3.30	11.10	47.60	3.20	11.10
[Mn(phen),](ClO ₄),·H,O	mustard	53.25	3.35	10.40	53.21	3.22	10.34
$[Fe(phen)_3](ClO_4)_2\cdot 3^1_2H_2O$	post box red	50.15	3.55	9.70	50.37	3.64	9.79
[Co(phen) ₃](ClO ₄) ₂ ·H ₂ O	dark yellow	53.00	3.20	10.30	52.96	3.21	10.29
[Ni(phen)](ClO ₄), H ₂ O	flesh pink	53.20	3.20	10.30	52.97	3.21	10.30
[Cu(phen),](ClO ₄),· ¹ ₂ H,O	dark egg blue	53.25	3.10	10.30	53.24	3.10	10.35
$[Zn(phen)_3](ClO_4)_2 H_2O$	white	52.70	3.20	10.25	52.54	3.18	10.21
$[Mn(phen-d_8)_3](ClO_4)_2 H_2O$	mustard	52.00	3.20	10.00	51.68	3.13	10.04
$[Fe(phen-d_8)_3](ClO_4)_2 \cdot 3H_2O$	post box red	49.85	3.45	9.50	49.50	3.46	9.62
$[Co(phen-d_8)_3](ClO_4)_2 H_2O$	dark yellow	51.60	3.20	10.00	51.43	3.12	10.00
$[Ni(phen-d_8)_3](ClO_4)_2 \cdot H_2O$	flesh pink	51.60	3.15	9.95	51.45	3.12	10.00
$[Cu(phen-d_8)_3](ClO_4)_2 \cdot H_2O$	duck egg blue	51.40	3.10	9.85	51.15	3.10	9.94
$[Zn(phen-d_8)_3](ClO_4)_2 \cdot H_2O$	white	51.30	3.00	10.00	51.04	3.09	9.92

TABLE I Microanalyses of M(II)(ClO₄), complexes

RESULTS AND DISCUSSION

Full infrared assignments of the M(II) complexes of bipy, phen and their perdeuterated analogues are based upon the assignments of the free ligands¹³⁻¹⁶ and are shown in Tables II to V. The far-infrared assignments reflecting the deuteration shifts found in this work as well as reported metal-isotope shifts^{5,6,9,17} are presented in Tables VI and VII.

. . .

-						
Mn	Fe	Со	Ni	Cu	Zn	Assignment
	3533 mbr					иО-Н (H,O)
3196 vw				3135 w	3145 vw	comb
				3112 m		
3110 m	3114 m	3110 m	3112 m	}	3113 m	2(vC-H)
				3102 m)		
3079 ms	3086 ms	3077 ms	3081 ms	3089 ms	3082 ms	20b(vC-H)
				3071 ms		
3069 ms	3078 msh	3069 msh	3065 msh	}	3070 msh	2', 7b, 20a and 20b' (vC-H)
				3067 ms		
3050 mwsh	۱	3046 mw	3046 mw	3040 msh	3046 m	7b'(vC-H)
	3037 vw }					
3021 mw	,	3024 mw	3027 mw	3023 w	3024 m	20a(vC-H)
2988 vw	2979 w		2960 vw	2970 vw	2956 vw -	ן
2781 w	2780 w	2778 w	2782 w	2783 vw	2782 vw	
2736 w	2738 vw	2738 w	2736 vw	2732 vw	2738 vw	
	2685 vw		2648 vw		2670 vw	1
2551 w			2558 vw		2555 vw	
2523 w		2525 vw	2527 vw		2524 vw	
2462 vw	2465 vw	2463 w	2462 vw	2465 vw	2465 vw	
2340 w	2340 vw		2335 vw	2334 w	2340 vw	
2265 w	2266 w	2264 w	2264 w	2265 w	2262 w	
2015 mw	2006 mw	2008 m	2009 mw	2014 wm	2010 w	
1990 wsh	1994 mw	1996 mw	1998 mw			> comb
1951 vw	1950 vw	1955 vw	1955 vw	1951 vw	1958 w	
1921 w		1925 w	1923 w	1936 w	1928 w	
1892 vwsh	1908 w	1915 w	1913 w	1915 vw	1920 w	
1867 vw		1853 w	1850 w	1856 w	1868 w	
1780 wbr		1775 w	1773 w	1780 vw	1780 vwbr	
1720 wbr		1728 w	1731 w	1730 wbr		
		1700 w	1702 w	1709 w	1715 wbr	
1673 vw	1682 vw		1680 vw		1675 w	
1634 vw	۱	1634 vw	1650 vw	1665 wbr	1644 w	
	1627 wm					
1621 vw	J	1620 vw	1625 vw)
	1.00	1/07	1.00	1607 vs	1.407	
1602 vs	1607 vs	1607 vs	1607 vs		1607 vs	8D (vring)
				1597s J		
	1.000	1.000	1.603	$1602 vs$ }	1.000	
1596 s	1600 s	1602 s	1602 vs		1598 s	8D(vring)
		1.574		1591 s	1.077	
15/5 m	15/4 wm	15/4 m	1574 m	15/5 m	15// ms	sa (vring)
1566 wm	1567 m	1564 wm	1564 m	1567 m	1567 m	sa(vring)
		1407	1404	1497 ms	1400	10 <i>//</i> · · ·
1491 ms	1495 m	1496 m	1494 ms		1492 m	19a (vring)
				1492 ms		
		1.473		1486 ms	1474	10 / 1)
1475 s	1465 s	14/3s	14/15	}	14/4 S	I9a(vring)
	1.4.42	1420	1441	14/25	1440	10177
1440 vs	1443 VS	1439 VS	1441 VS	1441 VS	1440 VS	190 (vring)
	1425 ms	1418 m	1419 msh			19D(vring)

- -

.

. .

TABLE II Infrared assignment $(4000-350 \text{ cm}^{-1})$ of $[M(\text{bipy})_3](\text{ClO}_4)_2$ complexes.

			TABLE	11 ((continue	<i>d</i>)		
Mn	Fe	Со	Ni		Cu		Zn	
1366 w	1372 m	1372 m	1375 w	1	1368 w		1368 w	
				1	1320 ms	٦		
1315 ms	1315 ms	1315 ms	1315 ms			}	1315 ms	5
				1	1314 ms	J		
1281 vw	1281 vw	1285 vw	1281 w	ļ	1281 vw		1284 w	
1262 vw	1272 w	1265 w	1265 w	1	1270 w		1266 w	
1246 s	1246 s	1246 s	1246 s	l	1247 s		1250 s	
1226 m								
}	1222 m	1220 m	1219 m	1	1218 m		1222 m	
1219 m)								
					1173 m	ſ		
1172 s	1168 s	1172 s	1171 s			}	1172 s	
					1167 m	J		
1157 s	1160 s	1159 m	1158 m		1159 s		1158 s	
					1105 vssh	L		
1082 vsbr	1092 vsbr	1088 vsbr	1089 vsbr		1087 vsbi		1085 vs	br
	1070 s	1070 s	1072 s					
1044 ssh		1045 s	1044 ssh		1047 s		1044 s	
1018 ssh	1024 s	1021 s	1023 s		1027 ms		1021 s	
			1017 ssh	<u>ا</u>	1020 ms	٦		
1014 s	1012 ms	1016 s		١,		ł	1014 s	
			1008 ssh	1	1006 msh	ני		
1001 s	1000 mw	998 w	1000 wsh	9	996 ms		1000 ms	s
984 w)				9	985 ms	ſ		
}						Ş	986 w	
973 wm J				9	971 w	3		
		964 wm ,					966 w	3
960 w	956 w		964 m	9	967 mw			
		ر 959 wsh					962 w	ر
930 vw	930 w	929 w	929 w	9	930 w		929 w	
903 w		896 w	895 w	9	905 w		899 wm	L
891 wsh	879 mw	892 mw	890 mw	1	891 w		894 wm	L
	826 w		816 wsh	1	813 w		819 wsh	1
812 w		813 w	813 w	1	809 w		815 w	
772 s	768 s	775 s	775 s		770 s		777 s	
					765 s	٦		
760 s	765 s	768 s	768 s			<pre>}</pre>	767 sbr	
					762 s	J		
747 s					749 ms			
737 s	734 s	736 s	736 s		735 s		737 s	

723 wsh

653 ms

634 m

623 s

550 vw

481 w

727 wsh

١

ſ

656 m

650 m

623 s

497 w

550 vw 1

723 wsh

651 ms

646 m

623 s

550 vw

725 wsh

653 ms

635 m

623 s

483 w

. . . •••

TADLE IL • л

Assignment

A(vinter-ring)

3'(aC-H)

14'(vring)

3(aC-H)

14(vring)

15'(αC-H)

15(aC-H)

9b'(αC-H)

18b(aC-H) 18b'(aC-H)

12(vring) l(vring)

12'(vring)

5(yC-H)

5'(γC-H)

 $v_s(ClO_4)$ 10b'(γC-H)

10b(yC-H) 10a'(γC-H)

 $10a(\gamma C-H)$

 $II'(\gamma C-H)$

11(₇C-H)

4'(yring)

6b(vring)

6a(vring)

comb

comb

4(yring) l'(vring)

 $v_a(ClO_4)$ and $9b(\gamma C-H)$

comb

722 wsh

658 m

652 m

623 s

550 vw

496 w

481 w

634 wsh

720 wsh

653 ms

632 ms

494 vw

623 s

 $\delta(ClO_4)$ and 6b'(vring)

	Fe	Со	Ni	Cu	Zn	Assignment
467 w	475 wm	465 vw	468 w	465 vw	478 w	E(ring scissors)
	456 w	455 vw	458 vw	458 w 441 m -	459 w	Γ(ring sheer)
424 w	438 wsh	433 m	439 m	423 m 410 ms	428 ms	l6b(γring)
412 ms	418 ms	413 ms	413 s	393 msh	} 413 s	l6a(γring)

s = strong, m = medium, w = weak, v = very, sh = shoulder, br = broad, comb = combination.

Mn	Fe	Со	Ni	Cu	Zn	Assignment
	3524 wmbr 3189 wbr					} 1O-H (H ₂ O)
			3143 vw	3140 vw	3136 vw	1
3131 wbr			3130 vw	3130 vw	3128 vw	
2993 vw		2997 vw	2995 vw		2994 vw	
2923 w	2925 w	2925 w	2920 vw	2920 vw	2922 w	
2854 vw	2850 vw	2853 vw	2850 vw	2850 vw	2854 vw	
2780 w	2780 vw	2776 w	2778 w	2778 w	2778 w	
2656 w	2664 w	2656 w	2666 w	2665 w	2660 w	> comb
2583 w		2581 vw	2576 vw		2584 vw	
2505 w	2506 w	2516 w	2519 w		2511 w	
2474 w	2470 vw	2472 vw	2480 vw		2480 vw	
2408 vw	2410 wbr	2410 w	2408 vw	2405 vw	2407 vw	
		2334 wm	2335 w	2334 w)
2308 wm	2312 wm	2310 wm	2312 w	2305 wm	2308 wm	2(vC-D)
2295 m	2298 m		ן ²²⁸⁸ wm	2295 msh	2294 ms	2', 20b' and 7b' (vC-D)
		2282 wmsh	.}			
2275 wsh	2280 msh		⁾ 2282 wmsh	2291 m	2283 msh	20b and 20a' (vC-D)
2270 wsh	2263 wsh	2270 m	2273 m	2261 w	2274 msh	20a and 7b (vC-D)
2186 w	2188 w			2182 vw	2188 w)
2017 mw	2012 w	2029 w	2032 w	2022 mw	2022 mw	
2003 wsh		2006 wm	2008 wm		2005 msh	
		1996 wm	1998 wm	1998 wmsh	1990 wsh	
1919 w	1920 w	1919 w	1918 w	1918 w	1920 w	
1804 w		1802 w	1804 w	1802 w	1804 w	> comb
	1798 w	1796 mw		1797 wm	1796 w	
1698 vw	1699 w	1700 vw		1694 vw	1700 wsh	
1682 w			1683 w		1683 w	
l645 w	1634 w	1640 vw	1643 vw	1650 w	1650 vw	
l601 w	1608 w	1594 w	1595 w	1598 w	1599 w	J
				ו 1577 ms		
1574 s	1576 s	1576 s	1578 s	}	1572 s	8b'(vring)
				1569 ms J		

TABLE IIIInfrared assignment (4000-350 cm $^{-1}$) of [M(bipy- d_8)₃](ClO₄)₂ complexes.

	······					
Mn	Fe	Со	Ni	Cu	Zn	Assignment
1560 s	1564 s	1566 s	1566 s	1562 ms	1563 ms	8b(vring)
1543 s	1542 s	1542 s	I 546 s	1544 s	1544 s	8a'(vring)
1530 10	1538s J	1530 c	1532 c	1532 6	1530 c	Sa(vring)
10012	1532 \$	1330.8	10018	13323	1000	ou(+Img)
1466 w	1466 w	1466 w		1468 w	1463 w	comb
				1433 ms		
1420 ms	1428 ms	1425 ms	1428 ms	{	1420 ms	19a'(vring)
1200	1200		1300	1418 ms	1207	h
1389 vw	1389 w	1267	1389 vw	1391 vw	1387 VW	comb
1301 VW	1370 W	1307 VW	1301 vw	1301 VW	1300 vw	19b'(gring)
1.244 VW	1342 111811	1542 W	1342 W	13335	1345 W	170(((iiiig)
1330 vs	1334 vs	1334 vs	1334 vs	}	1331 vs	19a(vring)
				1326 s		
1308 m	1301 m	1306 mw	1308 mw	1303 mw	1307 mw	19b(vring)
1271 vw		1270 vw	1271 vw	1270 vw	1267 w	comb
1257 vw	1259 vw	1261 vw	1262 vw	1262 vw	1256 vw	14(vring)
1237 s	1236 s	1240 s	1240 s	1240 s	1240 s	A(vinter-ring)
1200 w	1201 w	1201 vwbr	1202 vwbr	1206 w	1201 w	comb
1169 vw		1167 vw	1167 vw	1167 vw	1169 vw	14'(vring)
1005 1		1108 ssh	1109 ssh	1000 1	1001 1	(0)0.)
1095 vsbr	1088 vsbr	1091 vsbr	1095 vsbr $\}$	1088 vsbr	1091 VSDF	$V_a(CIO_4)$
1031 m		1070 3511		1029 ms	1030 s	
					}	12(vring)
1023 ms	1023 mssh	1020 m	1021 mw	1021 m	1022 s)	
				1009 wm		
1005 wm	1003 s	1003 s	1004 s	}	1004 s	l(vring)
				1003 wm		
				^{996 m}		
989 s	993 s	993 m	994 ms	000	992 s	(2 (vring)
070 -	000 -	002 -	095 -	992 ms	097 -	24+C D)
978 \$	980 s	983 s	985 S	978 m 070 m	983 S	$3(\alpha C - D)$
964 Wm	900 mw	904 mw	020	970 m	970 m 020	3(aC-D)
931 W	929 WM	929 W	930 W	931 W	929 W	$r_{s}(CIO_{4})$
8// (1)		949 .	873 VW	865 m	870 c	
866 5	ſ	000 3	000 1115	805 III	0703	90 (ue-D)
0005	867 6	860 c	862 ms	855 msh	861 6	
	^{00/3} (0003	002 113	000 111311	3013 <u>}</u>	9b(aC-D)
853 s	J			851 ms	\$	
843 mw		840 ms	843 msh	840 ms	839 m)	16% C D)
	829 ms	836 m	839 ms		}	13 (aC-D)
832 s	820 ms	832 ms	833 m	832 m	832 s	$\Gamma_{\sigma}(\alpha C - D)$
810 w		804 vw	805 w	806 vw	807 w	5(γC-D)
796 w	•	789 w	790 w	799 w	790 w	18b'(αC-D)
771 w	775 mw	772 w	774 w	777 w	770 vw	18b(aC-D)
		760 vwsh	760 vwsh		762 vw	5′(γC–D)
731 ms	730 m	732 ms	733 ms	731 ms	732 ms	4(yring)

. ... <u>.</u>

Mn	Fe	Co	Ni	Cu	Zn	Assignment
726 ms)	725 m	6b'(vring)
				722 m }		
718 m	719 m	718 mw	718 m	j	718 ms	4′(γring)
				ל ^{687 vw}	•	
667 vw	680 vw	676 vw	675 vw	}	> 678 vw	10b'(γC-D)
				681 vw 🤳	•	
				667 w	1	
658 wm	657 w	654 wm	654 wm		655 w	10b(γC-D)
				658 w))	
)	629 s	629 s	1	629 s	6b(vring) and 10a(γCD)
623 vs	622 s }			622 vs	}	
	j	623 vs	623 vs	,	623 vs	δ(ClO ₄)
				617 w)	1	
608 m		610 m	611 m	}	609 m	6a(vring)
				606 w 🧳		
583 s)	590 ms	590 ms	597 ms	594 s	l'(vring)
	585 s }					
570 s	,	586 s	586 s	583 s	587 s	11(γC–D)
472 vw	472 vwsh	470 vw	478 vw	477 vw	475 vw	comb
462 vw	464 w	457 vw	458 vw	454 wm	459 vw	comb
444 vw	444 w	446 vw	448 w		443 vw	E(ring scissors)
432 vw	426 vw	431 vw	439 vw	437 vw	430 vvw	Γ(ring shear)
				403 wm		
392 w	397 w	400 wm	405 m	}	· 396 m	l6b(γring)
				389 wm)		

TABLE III (continued)

ΤA	BLE	IV

Infrared assignment	(4000-350 cm ⁻	¹) of [M(pl	$hen)_3](ClO_4)$	₂ ·H ₂ O complexes.

Mn	Fe	Co	Ni	Cu	Zn	Assignment
3598 mbr	3604 mbr	3611 mbr	3608 mbr	3608 mbr	3612 mbr)
						$vO-H(H_2O)$
3525 mbr	3520 mbr	3521 mbr	3523 mbr	3522 mbr	3509 mbr -)
3080 msh	3085 m	3084 msh	3088 msh	3086 msh	3082 msh	23 (vC-H)
3064 m	3063 m	3064 m	3066 m	3065 m	3064 m	43, 22 and 21 (rC-H)
3024 w	3024 w	3022 w	3024 w	3020 w	3022 w	42 and 19 (vC-H)
		2995 w	3000 wsh	3000 wsh	3002 w	41(vC-H)
2924 w	2923 w	2928 vw	2929 w	2931 w	د 2935 w	
	2855 wbr		2860 wbr			
2778 w	2780 vw	2778 w	2778 w	2778 w	2772 w	
2612 vw		2610 w	2619 w	2617 w	2624 wbr	
2508 vw		2510 w	2510 w	2508 w	2512 w	
2462 vw	2460 vw	2463 w	2461 w	2465 w	2462 vw	
		2414 vw	2419 vw	2411 w	2412 w	
2300 vw	2296 vw	2291 vw	2294 w	2294 w	2295 w	
2265 vw ·	2263 w	2263 w	2265 w	2263 w	2264 w	comb
2008 wbr	2003 wbr	2010 wbr		2011 wbr	2009 wbr	
1987 wbr	1985 wbr	1986 wbr	1990 wbr	1975 wbr	1975 wbr	
1942 wbr	1943 wbr	1945 w	1948 wbr	1945 wbr	1948 wbr	
1918 wbr	1917 w	1917 mbr	1919 wbr	1919 wbr	1908 wbr	
1810 wbr	1792 vw	1795 w	1819 wbr	1817 vw	1818 w	
1716 w	1711 w	1716 w	1711 w 1	1715 w		··· · ··· · · · · · · · · · · · · · ·
1708 w		1703 w	••••	1702 w	1700 w	

Zn Assignment Mn Fe Co Ni Cu 1623 m 1625 m 18(vring) 1625 ms 1626 ms 1624 m 1625 m 1605 w 1604 w 1604 wm 1604 w 17(vring) 1605 w 1603 wm 1588 msh 1594 w 1586 m 1588 msh 1587 ms 40(vring) 1592 m 1585 msh 1583 ms 1580 ms 39(vring) 1578 m 1579 m 1580 s 1581 ms 1578 ms 16(vring) 1517 vs 1516 s 1518 s 1518 vs 1518 vs 1518 s 38(aC-H) 1496 ms 1494 m 1494 m 1494 ms 1495 ms 1495 ms 15(aC-H) 1451 vw 1455 vw 1460 vw 1461 vw 1456 vw 1454 vw 1425 vs 37(vring) and 14(vring) 1426 vs 1424 s 1424 s 1426 vs 1425 vs 1411 w 1400 m 36(vring) 1372 vw 1378 vw 1376 vw 1377 vw comb 1375 vw 1376 vw 1339 m 1339 m 1339 ms 1339 ms 13(vring) 1342 m 1342 m 1314 vw 1320 wsh 1314 vw 1318 w 1318 w 1319 w 35(vring) 1309 mw 1303 mw 1304 m 1305 m 1303 m 12(vring) 1303 mw 1255 vw 1252 vw 1253 vw 1257 vw 1258 vw 1254 vw 34(aC-H) 1224 m 1225 ms 1222 m 1223 ms 1223 m 1225 m 10(vring) 33(aC-H) 1209 w 1210 w 1209 w 1210 w 1209 w 1210 w 9(aC-H) 1191 vw 1202 vwsh 1197 vw 1199 vw 1200 vwsh 1195 w 1146 s 1146 ms 1147 s 1147 s 1148 s 1148 s $8(\alpha C-H)$ and $31(\alpha C-H)$ 1082 vsbr 1094 vsbr 1080 vsbr $v_{a}(ClO_{4})$, 30 and 7(vring) 1082 vsbr 1088 vsbr 1076 sbr 1037 msh 1035 ms 1033 msh 6(vring) 1001 wsh 1004 mw 1006 mwsh 1007 w 1011 w 29(vring) 46(yC-H) 992 w 994 mw 992 m 994 w 1001 w 973 w 973 wsh 975 w 975 w 57(yC-H) 969 w 963 w 962 ww 964 w 965 w 58(yC-H) 929 w 930 w 931 w 931 w 932 w 934 w $v_s(ClO_4)$ 909 w 905 vw 903 vw 904 vw 28(vring) 902 vw 904 vw 900 vw 871 wm 868 m 867 ms 866 m 869 m 869 m 48(vring) 865 m 852 s 851 s 849 s 855 s 5(vring) and 49(yC-H) 842 vs 845 vs 849 s 848 s 848 s ſ ſ 842 s 842 s 842 s 829 msh 831 w 834 wsh 59(yC-H) 806 vw 811 vw 811 vw 60(yC-H) 811 vw 777 vw 780 w 782 w 773 mw 782 mw 779 w 50(yring) 772 vw 776 vwsh 776 wm) 763 vwsh 770 wsh 767 w 767 wm 767 wm 6l(γring) 51(γC-H) 728 ssh 732 s 727 ssh 731 ssh 27(yC-H) 726 s 723 vs 724 vs 724 vs 723 vs 725 vs 721 s 4(vring) 646 m 647 m 645 m 642 m 644 m 26(vring) 642 m 639 m 641 m 643 m

623 s

623 s

624 s

623 s

623 s

623 s

δ(ClO₄)

Mn	Fe	Со	Ni	Cu	Zn	Assignment
556 vw	560 w	558 vw	559 vw	557 vw	558 w	3(vring)
543 vw	548 vwsh	546 vw	547 vw	546 vw	547 vw	comb
	531 wm -	1				
527 vw		}	529 vvw		539 vw	comb
	526 wm)				
512 vw	511 vw	511 vw	511 vw	511 vw	512 w	52(γring)
500 vw	500 vw			507 vwsh	500 vwsh	63(γring)
				489 vw		
477 vw	477 vw	482 vw	485 vw	}	482 vw	25(vring)
				478 vw ⁾		
457 vw	457 vw	458 vw		458 vvw	458 vvw	53(γring)
438 vw	438 vwsh	441 vw	446 vw		437 vw	24(vring)
421 m	426 m	425 wm	426 wm	422 wm	423 m	2(vring)

TABLE IV (continued)

TABLE V Infrared assignment (4000–350 cm⁻¹) of $[M(phen-d_8)_3](ClO_4)_2 \cdot H_2O$ complexes.

Mn	Fe	 Co	Ni	Cu	Zn	Assignment
	3600 whr	3615 whr	3611 wbr	3603 whr		
3013 WDI	3000 WDI	5015 W01	5011 W01	3003 401	5014 WDI	vO-H(H,O)
3481 wbr	3524 wbr	3525 wbr	3521 wbr	3519 wbr	3479 wbr)
2966 wm	2968 w	2966 w	2960 vw	2958 vw	2963 w	
2925 w	2924 w	2923 w	2928 w	2922 w	2925 w	1
2880 wbr		2858 vw	2860 vw	2854 w	2885 wbr	Comb
2780 w	2780 w	2778 w	2781 w	2780 vw	2783 w	Comb
			2577 w	2575 vvw	2572 vvw	
	2460 vvw	2462 vw	2463 w	2460 vvw	2463 vvw)
2309 w	2307 w	2304 w	2306 w	2305 w	2306 w	23(vC-D)
	2290 w					22 and $45(vC-D)$
2284 w	}	2283 w	2280 w	2280 w	2290 w	}
	2277 w)) 21 and 43(vC–D)
2270 wsh	2270 wsh	2266 w	2264 w	2268 wsh	2275 w	1
2022 w	2020 wbr	2019 wbr	2019 wbr	2016 wbr	2023 wbr	1
	1918 vw	1915 w	1920 w	1922 w		1
1792 vw	1797 w		1804 w	1802 vw		comb
1716 w	1706 wbr	1735 wbr	1728 w	1718 vw	1716 w	
1685 vw		1686 vw	1680 vwbr	1682 vw	1685 vw	1
1650 vw		1649 vw	1650 w	1649 w	1652 w	1
1611 wbr	1616 wbr	1622 wbr	1622 wbr	1629 vw	1613 w	/
1599 m	1604 w	1601 wm	1601 w	1600 w	1601 wm	18(vring)
1586 m	1588 m	1586 m	1588 m	1590 m	1589 m	40(vring)
1553 vw	1551 s	1551 s	1551 s	1553 s	1555 s	17(vring) and 39(vring)
1474 vs	1474 s	1473 vs	1474 vs	1474 vs	1476 vs	16(vring)
		1446 vw	1443 vw		1448 vw	comb
1431 s	1431 s	1431 s	1431 s	1431 s	1431 s	38(αC-D)
1421 ms				1422 m	1425 mw	$\frac{15}{15}$
1398 mw					1398 m	$\int \frac{1}{(u - D)}$

.

TABLE V (continued)

Mn	Fe	Co	Ni	Cu		Zn	Assignment
1388 w	1386 w	1387 w	1388 w	1388 w		1389 w	14(vring)
	1365 w	1366 vw	1369 vw	1368 vw		1370 vw	comb
1342 vs	1341 vs	1344 vs	1345 vs	1344 vs		1346 vs	37(vring)
1320 wsh		1326 msh	1329 wsh			1322 w	36(vring)
1304 m	1308 m	1307 m	1307 m	1307 m		1307 m	13(vring)
	1269 wsh			1275 w			comb
1262 s	1262 ms	1263 ms	1264 ms	1263 s		1263 s	35(vring)
1215 mw	1222 w					1219 w	comb
1168 w	1165 w	1168 w	1160 w	1168 w		1169 w	12(vring)
		1129 msh	1126 ssh	1128 ssh		1130 ssh)
							$v_{\rm v}(\rm ClO_{\rm s})$
1098 vsbr	1093 vs	1098 vsbr	1094 vsbr	1099 vsb	r	1100 vsbr	} •
1037 s	1037 ssh	1036 s	1036 m	1037 s		1037 s	$34(\alpha C-D)$
10235	1020 s	1023 s	1023 5	1022 s		1024 s)
	10200						$\frac{1}{33(\alpha C-D)}$
1013 m						1014 m)
976 s	974 ms	975 ms	975 ms	976 s		977 \$	10(vring)
947 yw	<i>y</i> /4 m3	916 vw	945 vw	916 vw		917 vw	comb
934 w	028 w	932 w	931 w	932 w		935 w	$r(C O_{1})$
754 W	720 W)) <u>/</u> (<i>))1W</i>	898 ms	``	755 W	1 _s (CrO ₄)
894 s	892 ms	892 s	893 s		ţ	895 ms	9(aC-D)
07.0	0/2 1110			892 ms	J	••••	
870 m	·869 w	870 w	871 vw	870 vw		871 m	$31(\alpha C-D)$
853 m	007 11	854 m	854 m	854 m		854 m	8(aC-D)
840 w		833 w	834 w	836 w		838 w	30(vring) and 7(vring)
816 w	815 m	818 w	818 w	818 viv		817 w	6(vring) and 29(vring)
010 %	012111	010 0	010 W	792 m		017 11	(((iiiig) and 2)((iiiig)
793 m	782 m	790 m	789 m		1	792 s	5(vring)
				787 m	∫		
772 vw		769 vw	767 vw	768 vw		772 vw	46(γC-D)
761 vw						761 vw	58(γC-D)
750 vw						750 vw	48(γC-D)
735 m	730 m	733 m	733 mw	732 mw		736 wm	28(vring)
722 m	722 msh	722 m	722 mw	721 w		722 w	48(yring)
				699 s)		
691 s	694 s	692 s	694 s	689 s	}	692 s	27(vring)
675 vw	677 wsh			674 vw	J	673 vw	$60(\gamma C - D)$
				669 vw	h		
667 vw	663 w	668 vw	667 vw		ł	667 vw	4(vring)
				662 w	J		
		639 s	639 s	638 s		637 s	49(yC-D)
640 s	636 s						
	···· }	634 m	632 s	630 s		631 ssh	50(vring)
623 \$	621 vs	623 \$	623 s	623 \$		624 s	δ(CIQ.)
594 ms	590 ms	596 ms	595 s	592 s		595 s	51(YC-D)
541 w	542 w	540 vw	540 vav	541 vw		543 w	26(yring)
JT1 W	494 w	540 41	JTU 11	483 vw		575 W	-3(1111-5)
487 vw		482 vw	483 vw		1	483 vw	25(vring)
	478 w \$			471 vw	5		
453 w	459 w	458 w	461 w	460 w	•	457 w	52(vring)
409 m	413 w	412 m	413 m	411 m		410 m	2(vring)
.07 m	-11.5 11	T12 III	712 M	-111 111		710 m	-(

. . . .

.

ssignment This work	\$CI0.	6a(vring)	comb	comb		[(ring scissors) $\Gamma(ring shear)$	{ 16b(yring)	_	(Ita(vrine)		comb	6a' (vring)	_	vM-N + comb		16b' (yring)	N-M-	+	NMND	B (ring shear)	_	8NMN	_	A (ring scissors)	Z (i. rotation)	ONMN OF MILICE	lattice	
As Previous								ligand A			ligand B			ligand C		ligand D			ligand t:		ligand F							
A** 57Zn							_				~	(+0.5)		(+ 0.3)		(+0.0) (+2.5)			(+3.5)	(+0-1)								
Zn -d _a	(623 vs)	(m 609)	(475 vw)	(459 vw)		(443 vw) (430 vvw)	(396 m)		(364 c)	(e Lor)	Ĵ	(355 wsh)		(245 w)		(232 wmsh) (223 ms)			(180 mw)	(171 wsh)	(154 vw.)	(139 m)	(-)	Ĵ	:] [(78 wSh)	(III 60)	Ĵ
• 10	623 s			494 w		478 w 459 w	428 ms		413.6		365 vw	358 vw		262 w		248 wsh 235 ms			188 m	170 w	161 vw	145 vw	125 ичи	109 vw	95 wsh	80 H:Sh	A /0	
Δ ^{63 66} Cu						-		_		_	(+0.2)	(+	(+0.2) (+0.2)	(f]+	(+2.0)	(+0.0)	(0.0+)		(+0.0)	(+0.0)	(0:0+)							
Си - <i>d</i> ,	(623 vs)	1	(606 w) (477 vw)	(454 wm)		(-) (437 vw)		(MW 48C)	(376 msh)	(367 ms)	Ĵ	(352 wm)	(1000)		(264 wm)	(m (2)	(204 m)		(189 m) (189 m)	(164 w)	(154 mm)	Ĵ	(130 wsh)	(107 wsh)	(mw 06)	(mm 58)	(UM 00)	(- -)
-do	623 s		550 vw	498 w	481 w	458 w	i i	E 624	410 ms	393 msh	365 vw	MA / CC	349 w	11 m 122	266 msh	255 w	217 w		199 NTM	175 wm	163 nm	151 vw	138 vw	116 w	98 wm		M C0	56 w
Δ ^{58 62} Νi											(9.0–)		(127)	(+2.4)	(+13)			(01+)	7		(50+)	-						
ν γ	(623 vs)	(011m)	(478 vw)	(458 vw)		(448 w) (439 vw)	(405 m)		(366 c)	le nor)	(345 w)		(380 m)	(276 m)	(264 w)	(236 w)		(200 vw)	(174 vws/	(I 70 w)	(154 m)	Ĵ		<u>.</u>	(H2W 06)	(42W US)	(m 80)	(159 wsh)
-do	623 s			483 w		465 w 458 vw	439 m		413 ms		361 w		701 me	281 m	266 w	256 wsh		215 ты	183 w	177 vvw	162 w	147 w		116 wsh	95 vwsh	W 28	₩/0	59 wsh
ج ا	(623 vs)	(e10 m)	(470 vw)	(457 vw)		(446 vw) (431 vw)	(400 wm)		(365 mc)	(em coc)	Ĵ	(345 w)		(275 wm)	(2 <i>5</i> 7 mm)	(-) (229 w)		Ē		(m 691)	(160 чм.)	(143 m)		: I	(89 wsh)	(80 wsh)	(m 40)	(57 wsh)
-do	623 s		550 vw	481 w		465 w 458 vw	439 m		4 3 ms		365 wsh	356 w		280 wm	264 m	249 w 231 w		206 ин		175 wsh	166 w	150 w			-	65 H.SA	00 M	59 wsh
Δ ^{54 57} Fc			~						(107)	(+ 6.0)	(+5.2)					(9.0-)			(0.0+)									
-d _n	(622 vs)	isked)	(472 vwsh	(464 w)		(444 w) (426 vw)	(397 w)		•	(368 ms)	(353 mw)	(325 w)		(285 m)		(240 w.hr)			(184 m)	Ĵ		(143 m)		(100 wsh)	(84 w)	(.4.02)	(m co)	Ĵ
-do	623 s	Ë	550 vw	497 w	į	475 w 456 w	438 wsh		418 ms	382 wm	372 w			285 m	-	247 wsh 241 w			192 w	165 vw		149 vw		110 vw	. m 66	/5 M/S/	* 00	48 wsh
11 	(623 vs)	(tu 809)	(472 vw)	(462 vw)		(444 vw) (432 vw)	(392 w)		(364 mc)			(343 w)		(275 vw)		sked) (239 m)	(204 wm)		(179 vwsh)	(N [1]		(139 wm)	(133 wsh)	<u> </u>	: ; [(45 wSh)	(m 60)	(56 wsh)
-d _o	623 s		550 vw		1	46/ W	424 w		412 m		365 wsh	355 w		280 vw		(ma: 241 ms	206 wm		190 %	169 w		150 wsh	140 wsh	118 vvw		82 WSh	M /0	56 wsh
-de	(603)					(414) (385)	(388)		(691)			(315)				(210)				(149)				(66)	(99)			
olpy -do	620	r S				₿ []	415		401	2		330				236				165				117	56			
	ç, Ç	2					lóĥ		1fia	<u>.</u>		, EQ	-		•••	,q91			•	8				v 1	N	-		

ssignment This work	\$CIO,	3(vring)]	comb	52(yring) 63(yring)	25(vring)) 53(yring) 24(vring)	2(vring) 64(yring)	comb	65(yring)) 54(yring)	N-W4	J l(vring)	NMN& + N-M	66(yring)	SS(yring)	SNMN lattice
A: Previous							nganu A	_	ligand B	U purai	2 2010		ligand D		ligand E	
A** 57Zn						((0.0 +)	(0:0+)		(-0.5)			(0:0+)	(+4.0) (+3.0)	(+0.0)		
۲۲ ۲۳	(624 s)	(595 s) (543 w) (-)	Ĵ	(457 w) ((-)	(483 vw)	(372 vvw) (masked)	(410 m) (372 vvw) (-)	Ĵ	(271 mw)	(241 w)		(217 w)	(m 161) (170 vw)	(149 vw) (143 wsh)	(-) (107 w.)	(78 w.) (59 wsh) (-)
1 do	623 s) 558 w 547 vw	53l vw	512 w 500 vwsh	482 vw	458 vvw 437 vw	423 m		285 wm	255 vw		242 w	192 m 176 w	159 w 144 w	109 vn	78 w <i>br</i> 65 wsh
∆ ^{6,3} مەرر					_		-		(+0.5)	(+0.2)		(+2.0)	(0:0+) ((0:0+) (-	
ŗ, Cu	(623 s)	(541 vw) (-)		(460 w) 1 (-)	(483 vw)	(471 vw) (372 vvw (masked)	(411 m) (372 vvw (-)	Ĵ	(306 vw)	(273 w) (273 w)	(236 vw)	(217 w)	(191 vw) (172 mw)	(141 mw	(135 mw (129 wsh (108 wws	(77 mw) (69 mw) (-)
• -d_0	623 s	557 vw 546 vw		511 w 507 vwsh	489 vw	478 vw 458 vvw	422 wm 392 vw	334 vvw	301 w	286 wm		246 wm	(—) 180 кт	147 w	105 vir	72 wsh 68 w
N ^{58 62} Ν		•				2.0	(-0.1)		é	(FZ+)	(+2.8)	(+0.9)	(20-) (20-)	(+0.5)	(¥	
ïZ "P	(623 s)	(540 vw) (—)	.	(461 w) (-)	(483 vw)	(372 vvw (masked	(413 m) (372 vvw (-)	Ĵ		(m 892)	(247 w)	(m 612)	(-) (178 w)	(152 vw)	(28 vw) (<i>105</i> vws	(72 w) (62 wsh) (-)
-do	623 s	559 vw 547 vw	529 vvw	511 vw	485 vw	446 vw	426 m 395 vw 366 vvw	338 vvw	000		246 mm	236 wsh	(–) 189 w	160 w	136 vw 1 109 vw	76 w 65 w
ې ی	(623 s)	(540 vw) (Ĵ	(458 w) (-)	(482 vw)	(370 vvw) (masked)	(412 m) (370 vvw) (-)	Ĵ	ĺ	(m 275 m)	(239 wm)	(217 w)	(170 vw.)	(143 vw)	(123 vw) (108 rwsh,	(72 wsh) (65 w) (55 wsh)
• -do	624 s	558 vw 546 vw		511 vw	482 vw	458 vw 441 vw	425 wm 406 vw			W 997	-	237 m	179 w	153 w	127 vwsh (-)	76 wm 63 w
∆ ^{34 37} Fc							(+4.4) (+6.3)		(+0.0)	(9.0-) ((+0.0)	(0:0+) (1:0+) ((7:0+) (
Fe -d,	(622 s)	(542 w) 1 (-)	<u> </u>	 (469 vw) (495 vw)	(482 w)	(364 vw) (masked	(437 m) (398 w) (363 w)	(m 666)	(281 m)	(237 wm		(220 wm	(185 hish (185 hish (-)	(144 w)	(117 w) (103 v:)	(78 w) (62 wsh)
-d _o	623 s	560 w 548 vwsh	531 wm	WN 115	484 vw	464 vw 1 439 vw	426 m (-) 360 vvw) 293 m	27l w		244 w	212 mw 192 wsh 175 ww) 155 vwst	117 whr	77 w 66 w
Mn -d ,	(623 s)	(541 w) (-)	Ĵ	(453 w)	(482 vw)	(369 vw) 1 (masked	(409 m) (369 vw) (-)	Ĵ	(260 wm	Ĵ		Ĵ	(201 wsh	(151 wsh (139 w)	ĴĴ	(90 wsh) (77 w) (55 wsh)
-da	623 s	556 vw 543 vw	527 vvw	512 vw 500 vw	477 vw	457 vw 438 vwsł	421 m 394 vvw 366 vvw		276 w			236 w	200 wm	159 wsh 147 н [.]		80 wsh 70 w 54 w
"p-		(536) (507) (536)		(444) (480)	(428)	(369) (399)	(350) (385)		(+C2)	(203)		(229)		(150)	(116)	
pher -do		623 852 605 852		509 499	499	457 427	411 402	1	G	245		203		14	13	
	-	ч <u>г</u> г		3 2	5	8 7 -	2.4		6	¥.	-			\$. 55	-

TABLE VII Far-infrared assignment (650-50 cm⁻¹) of [M(phen)₃](ClO₄)₂ complexes and their perdeuterated analogues.

The spectra reveal that the bands which arise from a common origin within the localized symmetry of the ligand (*e.g.*, the A_1 and B_1 or the A_2 and B_2 twin components of the pyridyl ring vibrations in *cis*-bipy) are not completely resolved into the full number of components expected for the D_3 complex (*e.g.*, the four components of the pyridyl ring vibrations, A_1 , A_2 and 2E). With the exception of the Cu(II) complexes, only six bands show splitting in the tris(bipy) metal complexes, modes $14(-d_0)$, $6b(-d_0)$, $5'(-d_0)$, $15'(-d_8)$, $12(-d_8)$ and $6a(-d_8)$, while four are split in the phen analogues: modes $50(-d_0)$, $40(-d_0)$, $33(-d_8)$ and $15(-d_8)$. This weak splitting of the localized ligand symmetry is typical of the tris(bipy) metal complexes.¹⁰

In both series of metal(II) complexes, several ligand bands show metal sensitivity which follows the Irving–Williams sequence.¹⁸ This metal sensitivity may be explained by comparison with the metal-sensitive ligand vibrations in M(II) complexes with pyridine, for which the planar ring modes 12, 8a, 6a and I and the out-of-plane ring mode 16b have long been recognized as being strongly metal-sensitive, while the planar ring modes 19a and 19b, the out-of-plane ring mode 4 and the C–H modes 15 and 5 are lightly metal-sensitive.¹⁹⁻²³ The combination band at *ca* 1640 cm⁻¹ (6a + 1) is metal-sensitive due to its components.²³ This metal sensitivity is a result of kinematic coupling with the M–N vibrations.^{19,23} The nature and extent of this coupling may be comprehended by comparing it with the coupling experienced in pyridine *N*-oxide (pyO)²⁴ or in a mono-substituted benzene,²⁵ since the same ring modes reflect either strong or weak N–O or C–X sensitivity.

In bipy and its $-d_8$ analogue, several ring modes show metal sensitivity: 19a, 19a', 19b($-d_0$), 16b, 16b', 16a, 14($-d_0$), 12($-d_0$), 12', 8b, 8b', 6a($-d_8$), 6b($-d_0$), 1 and 1'. Five C--H bends, modes 18b, 15($-d_0$), 15'($-d_0$), 10b($-d_8$), and 9b($-d_8$), and three C-H stretches, 3070 cm⁻¹ (degenerate vibration) and 3080 cm⁻¹ (mode 20b) show metal sensitivity. Three of the non-benzenoid inter-ring vibrations, modes B($-d_0$), $\Gamma(-d_8)$ and E($-d_8$) show metal sensitivity. The poor resolution of the far-infrared prevents an examination of the metal sensitivity of the two inter-ring modes of lowest frequency. The metal sensitivity of these ligand modes may be compared with their corresponding N-O and inter-ring sensitivity in 2,2'-bipyridine-N,N'-dioxide.¹⁵ The loss or acquisition of metal sensitivity on deuteration reflects a change in the kinematic coupling and is similar to the loss of metal sensitivity by mode 6a in py- d_5 .²²

Kinematic coupling between the ligand modes and the M-N vibrations in the phen complexes is not as extensive, showing fewer metal sensitive bands. Metal sensitive ring modes in the phen complexes are modes 65, 54, $52(-d_8)$, $28(-d_0)$, 25, $24(-d_0)$, $12(-d_0)$, $5(-d_8)$, $4(-d_g)$ and $2(-d_8)$. One C-H stretch (mode 23), two planar C-H bends (modes 34 and 9) and one out-of-plane C-H bend (mode 48) show metal sensitivity in the phen- d_0 complexes.

With the Jahn-Teller distortion experienced by the Cu(II) complexes, the localized symmetry of the ligand is lowered to yield two different ligand environments, thereby affording the potential for splitting of the ligand bands. From Tables II and III a number of such split bands are observed in the complexes with bipy- d_0 and bipy- d_8 , including mode $6b(-d_0)$ which accounts for the splitting of the 625, 660 cm^{-1} bipy doublet noted by Inskeep.¹ Those bands which show this splitting are generally metal-sensitive. It is also of interest that the inter-ring stretch, mode $A(-d_0)$ shows splitting as a result of Jahn-Teller distortion.

The $[Cu(phen)_3](ClO_4)_2$ complex shows only three split bands, namely modes 48 (α C-H), 28 (vring) and 25(vring) (Table IV). Since the infrared spectrum of this complex is extremely rich, it is not surprising that in the absence of a complete vibrational assignment this evidence for tetragonal distortion was overlooked. The

.

phen- d_8 complex shows twice as many bands which are sensitive to tetragonal splitting; these are modes 64(vring), 27(vring), 9(α C-H), 5(vring) and 4(vring). Again, these are generally metal-sensitive bands.

Finally, of the fifteen metal-ligand vibrations, three infrared active M-N stretches $(A_2 \text{ and } 2E)$ and four M-N bends $(A_2 \text{ and } 3E)$ are theoretically expected for D_3 symmetry, while the full six stretches (3A and 3B) and nine bends (5A and 4B) are expected for the tetragonal Cu(II) complexes. Site and correlation field splitting of the bands into several components is not expected in these complexes because of the large size of the ligands.²⁶

The assignments of the metal-ligand vibrations are rendered difficult because of the presence in both series of low lying ligand bands within this region, as well as resulting from the sensitivity of the metal-ligand bands to the crystal field stabilization energy (CFSE). The assignments below 625 cm^{-1} of the M(II) tris-bipy and trisphen complexes are given in Tables VI and VII. These have been based upon the assignment of the ligand bands, upon their metal sensitivity and upon deuteration and metal isotope sensitivity.

The metal-nitrogen stretches are found in the region 400 to 180 cm^{-1} for both series and, with the exception of Fe(II), follow the Irving-Williams sequence (namely Mn < Fe < Co < Ni < Cu > Zn).¹⁸ The M-N stretches for Fe(II) are some 90 to 150 cm^{-1} higher than the other metals as a result of their greater CFSE, being low spin complexes.³

Within the bipy complexes, all three of the expected infrared active M-N stretches are observed. Their assignment is complicated by the presence in this region of two ligand bands at $ca \ 355 \text{ cm}^{-1}(-d_0)$ and at $ca \ 250 \text{ cm}^{-1}(-d_0)$ (being modes 6a' and 16b')¹⁵ and of a combination or difference band at 280 cm⁻¹(-d_0) (Table VI). Indeed, mode 6a' was assigned as a metal-nitrogen stretch by Percy and Thornton because of its metal sensitivity.³

In the spectra of the phen complexes, generally only two of the three expected M– N stretches are observed (Table VII). This is probably due to accidental degeneracy with an incomplete resolution of the bands. The presence of twice as many combination bands (at 340 and 370 cm⁻¹) and twice as many ligand bands at $390 \text{ cm}^{-1}(-d_0)$, $285 \text{ cm}^{-1}(-d_0)$, $260 \text{ cm}^{-1}(-d_0)$ and $240 \text{ cm}^{-1}(-d_0)$ (being modes 64, 65, 54 and 1, respectively)¹⁶ makes the vM–N assignments more difficult than in the case of the bipy complexes. Consequently, with the stretching frequencies lying below the frequency range that they examined, Percy and Thornton incorrectly assigned the ligand modes 1 and 65 as vM–N for the metals Mn and Zn.³ A further such difficulty is observed in the Cu(II) complex, for which the bands at 301 cm⁻¹ and 286 cm⁻¹ may also be considered as possibly highly-coupled vM–N (particularly the former in view of its metal isotope sensitivity) rather than as ligand modes 65 and 54.

The metal-nitrogen bends show less metal sensitivity than the stretches, as shown by the Fe(II) frequencies being only some 30 to 70 cm⁻¹ higher than the other metals. These bends are found in two ranges. The highest bends are found between 240 and 140 cm⁻¹ in both metal series. In ML₆ *N*-heterocyclic complexes the two lowest δM -N vibrations occur at *ca* 100 cm⁻¹ and at *ca* 80 cm⁻¹,²⁷ and since chelation causes the M-N bends to be found at slightly higher frequencies than for monodentate complexes,²⁸ the lowest δM -N is assigned to the band at 150 and 125 cm⁻¹ in the bipy complexes and at 115 to 105 cm⁻¹ in the phen complexes. The band at 80 to 70 cm⁻¹ (both series), which is the highest lattice vibration, may also mask the lowest δM -N for the Mn and Zn complexes. Of the four δM -N modes expected, two to four are observed depending upon the metal. (For Mn and Zn only two of the bends are clearly identified in both series). The assignments of these bends are complicated by the presence of three ligand modes (modes B, Δ and Z) for bipy, and two ligand modes (modes 66 and 65) for phen (Tables VI and VII).

It is necessary to comment further on the behaviour of the Cu(II) complexes with bipy and phen. Six M-N stretches and nine bends are expected for C_2 symmetry; however, only three stretches and six bends are observed for the Cu(bipy)₃²⁺ cation and two stretches (with a possible third) and five bends are observed for the Cu(phen)₃²⁺ cation. It is therefore clear that the splitting of the M-N fundamentals expected for tetragonal distortion does not appear to occur for the stretches, although it does for some of the bends. This may be accounted for by the stretching modes being accidentally degenerate, and hence not fully resolved. Support for this suggestion is obtained from the infrared and Raman spectra of the Zn *tris*-phen complex in which the polarized Raman line at 286 cm⁻¹ has a strong infrared counterpart at 288 cm⁻¹, which is evidence that the symmetric and antisymmetric Zn-N stetches are degenerate.²⁹ The infrared and Raman spectra of the Ru(II) trisbipy cation reveals the same situation.¹⁰

In conclusion, the fully deuterated ligand study has enabled a full assignment of the low lying frequencies of the M(II) tris-bipy complexes and their phen analogues. It has allowed a more complete assignment of the "ligand vibrations" made by Nakamoto and coworkers^{5,6,9} (Tables VI and VII). Indeed, some of the "ligand bands" identified by these authors have been found actually to consist of two ligand modes, (e.g., Ligand A in bipy complexes is more correctly identified as modes 16a and 16b, while for the phen complexes Ligand A consists of modes 2 and 24, and Ligand C is more correctly modes 1 and 54). Of the "ligand bands" previously considered as *activated* ligand vibrations, some have been clearly identified (e.g., Ligand D in the bipy complexes is mode 16b'), while others are identified as actually consisting of two vibrations (e.g., in the bipy complexes Ligand B is identified as being a combination band and mode 6a, with Ligand F consisting of mode B and δM –N, while in the phen complexes Ligand D describes the ligand mode 66 and a δM –N band). Furthermore, some of the bands considered by Nakamoto and coworkers to be activated ligand bands are preferentially now assigned as M-N bends (e.g., Ligand E in the bipy complexes and Ligand E in the phen complexes). The two lowest-lying ligand modes in the bipy complexes (modes Δ and Z) and the lowest mode in the phen complexes (mode 55) have been newly identified, being found at frequencies below the range previously investigated. Finally, the present deuteration study in conjunction with previous metal-isotope studies^{5,6,9,17} show that the M-N fundamentals are coupled vibrations, corroborating the kinematic coupling behaviour experienced by some of the ligand vibrations.

ACKNOWLEDGEMENTS

We thank S.A. Goldfields Ltd. and the Foundation for Research and Development of the CSIR for financial assistance.

. . .

REFERENCES

- 2. G.C. Percy and D.A. Thornton, Spectrosc. Lett., 3, 323 (1970).
- 3. G.C. Percy and D.A. Thornton, J. Molec. Struct., 10, 39 (1971).

^{1.} R.G. Inskeep, J. Inorg. Nucl. Chem., 24, 763 (1962).

- 4. G.C. Percy and D.A. Thornton, J. Molec. Struct., 14, 313 (1972).
- 5. B. Hutchinson, J. Takemoto and K. Nakamoto, J. Am. Chem. Soc., 92, 3335 (1970).
- 6. Y. Saito, J. Takemoto, B. Hutchinson and K. Nakamoto, Inorg. Chem., 11, 2003 (1972).
- 7. O.P. Anderson, J. Chem. Soc., Dalton Trans., 2597 (1972).
- 8. O.P. Anderson, J. Chem. Soc., Dalton Trans., 1237 (1973).
- 9. J.H. Takemoto, B. Streusand and B. Hutchinson, Spectrochim. Acta, 30A, 827 (1974).
- 10. O. Poizat and C. Sourisseau, J. Phys. Chem., 88, 3007 (1984).
- 11. J.S. Strukl and J.L. Walter, Spectrochim. Acta, 27A, 223 (1971).
- 12. S. McClanahan and J. Kinkaid, J. Raman Spectrosc., 15, 173 (1984).
- 13. N. Neto, M. Muiz-Miranda, L. Angeloni and E. Castellucci, Spectrochim. Acta, 39A, 97 (1983).
- 14. M. Muiz-Miranda, E. Castellucci, N. Neto and G. Sbrana, Spectrochim. Acta, 39A, 107 (1983).
- 15. D.A. Thornton and G.M. Watkins, Bull. Soc. Chim. Belges, 100, 221 (1991).
- 16. D.A. Thornton and G.M. Watkins, Spectrochim. Acta, 47A, 1085 (1991)
- 17. R.E. Wilde and T.K.K. Srinivasan, J. Inorg. Nucl. Chem., 36, 323 (1974).
- 18. H. Irving and R.J.P. Williams, J. Chem. Soc., 3192 (1953).
- 19. S. Suzuki and W.J. Orville-Thomas, J. Molec. Struct., 37, 321 (1977).
- 20. N.N. Greenwood and K. Wade, J. Chem. Soc., 1130 (1960).
- 21. N.S. Gill, R.H. Nuttall, D.E. Scaife and D.W.A. Sharp, J. Inorg. Nucl. Chem., 18, 79 (1961).
- J.R. Durig, B.R. Mitchell, D.W. Sink, J.N. Willis and A.S. Wilson, Spectrochim. Acta, 23A, 1121 (1967).
- 23. S. Akyüz, A.B. Dempster, R.L. Morehouse and S. Suzuki, J. Molec. Struct., 7, 105 (1973).
- 24. S. Szöke, A. Gelléri and E. Baitz, Acta Chim., 48, 343 (1966).
- 25. G. Varsány and S. Szöke, Vibrational Spectra of Benzene Derivatives, (Academic Press, New York, 1969).
- 26. E.D. McKenzie, Coord. Chem. Rev., 6, 187 (1971).
- 27. D.M. Adams and W.R. Trumble, J. Chem. Soc., Dalton Trans., 30 (1975).
- 28. C. Postmus, J.R. Ferraro and W. Wozniak, Inorg. Chem., 6, 2030 (1967).
- 29. K. Krishnan and R.A. Plane, Spectrochim. Acta, 25A, 831 (1969).